Star Versus Two Stripes Ramsey Numbers and a Conjecture of Schelp
نویسندگان
چکیده
R. H. Schelp conjectured that if G is a graph with |V (G)| = R(Pn, Pn) such that δ(G) > 3|V (G)| 4 , then in every 2-colouring of the edges of G there is a monochromatic Pn. In other words, the Ramsey number of a path does not change if the graph to be coloured is not complete but has large minimum degree. Here we prove Ramsey-type results that imply the conjecture in a weakened form, first replacing the path by a matching, showing that the star-matching–matching Ramsey number satisfying R(Sn, nK2, nK2) = 3n− 1. This extends R(nK2, nK2) = 3n− 1, an old result of Cockayne and Lorimer. Then we extend this further from matchings to connected matchings, and outline how this implies Schelp’s conjecture in an asymptotic sense through a standard application of the Regularity Lemma.
منابع مشابه
The Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملRamsey Numbers of Trees Versus Odd Cycles
Burr, Erdős, Faudree, Rousseau and Schelp initiated the study of Ramsey numbers of trees versus odd cycles, proving that R(Tn, Cm) = 2n− 1 for all odd m > 3 and n > 756m10, where Tn is a tree with n vertices and Cm is an odd cycle of length m. They proposed to study the minimum positive integer n0(m) such that this result holds for all n > n0(m), as a function of m. In this paper, we show that ...
متن کاملSize Multipartite Ramsey Numbers for Small Paths Versus Stripes
For graphs G and H, the size balanced multipartite Ramsey number ) , ( H G m j is defined as the smallest positive integer s such that any arbitrary two red/blue coloring of the graph s j K × forces the appearance of a red G or a blue H . In this paper we find the exact values of the multipartite Ramsey numbers ) , ( 2 3 nK P m j and ) , ( 2 4 nK P m j .
متن کاملThree-Color Ramsey Numbers For Paths
We prove for sufficiently large n the following conjecture of Faudree and Schelp : R(Pn, Pn, Pn) = { 2n− 1 for odd n, 2n− 2 for even n, for the three-color Ramsey numbers of paths on n vertices. ∗2000 Mathematics Subject Classification: 05C55, 05C38. The second author was supported in part by OTKA Grants T038198 and T046234.
متن کاملRamsey-minimal graphs for star-forests
It is shown that if G and H are star-forests with no single edge stars, then (G, H) is Ramsey-finite if and only if both G and H are single stars with an odd number of edges . Further (5,,, U kS 1 , S, U 1S T ) is Ramsey-finite when m and n are odd, where S, denotes a star with i edges . In general, for G and H star-forests, (G U kS i , H U lS,) can be shown to be Ramsey-finite or Ramsey-infini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 2012